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1. INTRODUCTION

In this paper we consider certain transformations of families of approxi
mating functions which leave invariant some desirable properties of these
families. These transformations appear to be useful, for example, in gener
ating from linear Chebyshev families nonlinear families of types for which
some characterization and uniqueness theorems are available. However,
very little discussion of such transformations appears in the literature.
Motzkin [4] mentions some transformations which preserve the unisolvence
property. More recently, Moursund and Taylor [5] noted that generalized
weight functions can be used to transform families of functions and that
such a transformation preserves the varisolvence property, but they did not
exploit this fact.

The transformations that we have studied are based essentially on
Moursund's generalized weight functions. We find, however, that continuity
and a monotonicity condition are sufficient for the transformation to preserve
varisolvence. One additional hypothesis suffices to yield a unisolvence
preserving transformation. These results are presented in Section 2. Under
slightly stronger hypotheses than are required for the varisolvency case,
we obtain (Section 3) transformations preserving properties pertinent to the
nonlinear approximation theory of Meinardus and Schwedt [1,2]. Finally,
Section 4 contains a theorem giving bounds on the error of approximation
from a transformed family in terms of the error of approximation from
the original family.

Usually varisolvent and unisolvent families are defined on a closed interval
of the real line. Our results, however, will hold in a more general setting.
We shall deal throughout with continuous real-valued functions defined on
a compact metric space X. The norm to be used is the uniform (Chebyshev)
norm.
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2. TRANSFORMATIONS OF VARISOLVENT AND UNISOLVENT FAMILIES

The theory of approximation by nonlinear unisolvent families dates back
to Motzkin [3,4] and Tornheim [9, 10]. For such families one has theorems
quite analogous to the standard existence, uniqueness, and characterization
theorems of linear Chebyshev theory. Rice [6, 7] has introduced the more
general concept of varisolvent families and has obtained uniqueness and
characterization theorems. We include here the key definitions for reference.

DEFINITION 1. A family F of functions f (a, x), where x E X and a E A,
A being a subset of the n-space Rn, is called unisolvent if for any prescribed
Y = (Yl ,Y2 ,... , Yn) E Rn and any n distinct points Xi (i = 1,2,... , n) in X,
there exists a unique a E A such that/(a, Xi) = Yi for i = 1,2,... , n.

DEFINITION 2. A family F of functions / (a, x) is said to have property Z
of degree m at 00 E A if, for every a E A, the function /(00 , x) - /(0, x)
possesses at most m - 1 zeros on X or vanishes identically.

DEFINITION 3. A family F of functions /(0, x) is called (locally) solvent
of degree m at 00 E A if for every set of m distinct points Xi (i = 1,2,... , m)
in X and every prescribed € > 0 there exists a 8 = 8(00 , €, Xl"'" Xm) > 0
such that

IYi - /(00 , xi)1 < 8,

implies the existence of an a E A satisfying

i = 1,2,..., m,

/(0, Xi) = Yi ,

and 11/(0, x) - /(00 , x)11 < E.

i = 1,2,... , m,

DEFINITION 4. A family F is called (locally) unisolvent of degree M at
0 0 E A if M is the largest integer m for which F is solvent of degree m at 00

and has property Z of degree m there.

DEFINITION 5. A family F is called variso1vent if for each a E A there
exists an integer m(o) such that F is unisolvent of degree mea) at a.

We shall consider transformations of families F of functions /(0, x) to
families of functions of the form W(x, /(0, x)). Our first theorem deals with
varisolvent families.

THEOREM 1. Let W(x, y) satisfy (a) W(x, y) is a strictly increasingfunction
ofY for every x E X; (b) W(x, y) is continuous on X X (- 00, (0). Let F be a
varisolventfamily offunctions. Then {W(',!) :fEF} is varisolventon X, each
W(·,j) having the same degree as the corresponding f.
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Proof Suppose hE F has degree m. It will suffice to prove property Z
and solvency of {W(',!) :/E F} of degree m at.h, for it will then follow
that we cannot have solvency of degree m + 1. If this were not the case,
then given any set of m + 1 distinct points Xl , X2 ,..., Xm+I E X we could
find /2 EF such that W(Xi ,h.(Xi)) = W(xi ,fixi)) for i = 1,... , m but
W(xm+I ,h(xm+I)) =1= W(xm+I ,f2(Xm+I))' However, property Z of degree m
implies that W(x,h(x)) equals W(X,f2(X)) identically, which is a contra
diction.

In order to prove property Z, suppose there exist m distinct points
Xl' X2 , ••• , Xmin X and a function/2 EF such that W(Xi "h(xi)) = W(Xi ,fixi))
for i = 1,2,... , m. Then by (a) we must haveh(xi) = fixi) for i = 1,2,... , m;
but since the family F enjoys property Z, this implies that h = /2' and
hence W(',h) = W(',f2)' Thus {W(',j) :/EF} satisfies property Z.

In order to show that {W(', f) :I EF} is solvent of degree m at 11 , let
E > 0 and distinct points Xl 'X2 ,,,., Xm E X be given. Let

1= [min/l(x) - E, max/l(x) + e].
xeX xeX

Since W(x, y) is uniformly continuous on the compact set X X I, we can
find an e* satisfying 0 < e* :( e such that III - 12 I < e* implies
I W(X, II) - W(x,/2)1 < e for all x E X and all 11, 12 in I. Thus, for any
function g on X.

II g - h II < e* => II W(', g) - WCh)11 < e. (1)

By the varisolvence of F at h. we can find D* > 0 such that

I IXi - h(Xi) I < S* for all i => {there exists an}; EF

such that};(xi) = IXi for all i and Ilh - 1211 < e*}. (2)

Now, for each X E X, W",(y) = W(x, y) is a continuous, increasing function
of y with a continuous, increasing inverse W;l. From (a), (b) and the conti
nuity of W;l for every i, we can find a number S > 0 such that for every i,
IYi - W(Xi ',h(Xi)) I < S implies that Yi is in the range of W"" (i.e., W;,I(Yi)
exists) and I W;1(Yi) - h(Xi) I < S*. It follows from (2) th~t there i's an
12 EF such that'-h(xi) = W;I(Yi) for all i and Ith - }; II < e*. Therefore,
W(Xi ,};(Xi)) = Yi for all / and, by (1), II W(',f2) - W(',fl)1I < E. This
completes the proof of the theorem.

The proof of Theorem 1 is essentially the same as that of Theorem 1 of
Moursund and Taylor [5]. We have included it here to make it clear that
our hypotheses are sufficient to allow the proof to go through. Now we
shall show that, by adding one additional hypothesis, one obtains something
stronger-namely, a unisolvency-preserving transformation.
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THEOREM 2. Let W(x, y) satisfy (a) and (b) of Theorem 1 and also (c):
limlyl->oo I W(x, Y)I = 00. Let F be a.famity offunctions unisolvent of degree n.
Then {W(', 1) : f E F} is unisolvent of degree n.

Proof Given any y = (Yl ,12 ,... , Yn) and any n distinct points Xi
(i = 1,2,... , n) in X, it follows from the assumptions on W(x, y) that W;l(Yi)
is defined for all i. By the unisolvence of F we can find an f E F such'that
f(Xi) = W;l(Yi), or W(Xi ,f(Xi» = Yi, for all i. Since property Z has
already bee~ established in the proof of Theorem 1, this f must be unique.
Thus uniso1vency is proved.

From the theorems of this section we can deduce, for example, the vari
solvence on any closed and bounded interval of the set of functions
{exp(p(x» : pEPn}, where Pn is the family of polynomials of degree n or
less. As another example, we see that the family {(g(x) + p(x»k : p E Pn},

for any odd integer k and any fixed continuous function g, must be unisolvent
of degree n + 1.

3. LOCAL HAAR CONDITION AND ASYMPTOTIC CONVEXITY

Meinardus and Schwedt [1,2] have developed a theory of nonlinear
approximation (including the usual uniqueness and characterization theo
rems) based on the concepts of asymptotic convexity and the local Haar
condition. A differentiability condition is imposed on the approximating
functions, but otherwise the theory is very similar to that based on vari
solvency. One might expect, therefore, that transformations of the type
discussed in Section 2, but with perhaps additional smoothness conditions,
will preserve the key properties pertinent to this theory. We shall show that
this is indeed the case, but first we mention the definitions of the concepts
under consideration.

DEFINITION 6. An n-dimensional linear space F of functions on X is
said to satisfy the Haar condition if every .f in F either vanishes identically
or has at most n - 1 zeros on X.

We note for future reference that, if {CPi}7=1 is a basis for F, the Haar condi
tion is equivalent to the condition that the determinant det(cp;(xj» -=1= 0 for
any distinct points Xl , X 2 , ... , X n of X.

Now let A be an open subset of Rn, so that any a E A has the form
a == (0:1 , CX 2 , ••• , iXn).

DEFINITION 7. A set of functions {/(a, x) : a E A} is said to satisfy the
local Haar condition if each f(a, x) is continuously differentiable with
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respect to IXv (v = 1,2,... , n) and W(a), the linear span of the set
{of(a, X)/OIXI , .•. , Of(a, X)/OIXn }, satisfies the Haar condition. We denote the
dimension of W(a) by d(a).

DEFINITION 8. A set of functions {I(a, x) : a E A} is asymptotically
convex if for each a, b in A and each t E [0, 1] there exist a parameter-value
aCt) E A and a continuous real-valued function g(x, t), defined on X X [0, 1]
and satisfying g(x, 0) > °for all x E X, such that

[10 - tg(x, t))f(a, x) + tg(x, t)f(b, x) - f(a(t), x)[j = oCt) as t-+ 0.

THEOREM 3. Let W(x, y) satisfy (a') W(x, y) is continuously differentiable
Ivith respect to y on X X (- 00, (0), and (b') 0W(x, y)/oy > °for all (x, y)
in X X (- 00, (0). Then if {I(a, x) : a E A} satisfies the local Haar condition,
so does {W(x, f(a, x)) : a E A}, and the transformation leaves d(a) unchanged.

Proof Let a E A be fixed, and, renumbering if necessary, let
{Of (a, X)/OIXv}~~~) be a basis in W(a). We note that oW(x,f(a, X))/OIXk'
k = d(a) + 1,... , n, are linearly dependent on {oW(x,f(a, x))/ocxv}~~~), since

oW(x,f(a, x» = oW(x, Y) I .Of(a, x)
ocx" oy Y~f(a.x) ocx"

oW(x, y) I d(a) of(a, x)
= n • L Yv 0 (for some YI ,... , Yd(a»

°YY~f(a.x) v~l IXv

d(a) 8W(x,f(a, x»
= L Yv ocx .

v=l v

Therefore, the transformation can not increase d(a).
Now let distinct points Xl'"'' Xd(a) in X be given, and consider the following

matrices. Let

where b .. = oW(Xj ,f(a, Xj»
tJ OCXi '

where

and let D = (dij ) be the diagonal matrix with

d .. = 0W(Xi , y) I
" .oy Y~f(a.x;>

We note that B = CD, so det(B) = det(C) . det(D), and it follows from
our assumptions that this product is nonzero. It is then clear that the d(a)
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functions oW(x,f(a, x))/ocxv are linearly independent, and that the local
Haar condition is satisfied (with degree d(a) at each a) by the set
{W(x,f(a, x)) : a E A}.

THEOREM 4. If W(x, y) satisfies conditions (a') and (b') of Theorem 3,
and if {f(a, x) : a E A} is asymptotically convex, then {W(x,f(a, x)) : a E A}
is also asymptotically convex.

Proof From the hypotheses it follows that

f(a(t), x) = f(a, x) + tg(x, t)(f(b, x) - f(a, x)) + r(x, t),

where II r(x, t)11 = o(t) as t ~ 0. Now consider any fixed x E X. We have

oW(x, y) I = lim W(x,f(a, x) + Lly) - W(x,f(a, x)) .
oy Y~f(a.",) .dy->o Lly

Taking Lly = tg(x, t)(f(b, x) - f(a, x)) + r(x, t), which approaches zero in
norm as t~ 0, we find

W(x,f(a(t), x)) = W(x,f(a, x)) + [tg(x, t)(f(b, x) - f(a, x))

oW(x, y) I+ r(x, t)] ° + q(x, t),
Y 'Y~f(a.",)

(3)

where II q(x, t)11 = o(t) as t~ 0. By the mean-value theorem we have

W(x,f(b, x)) - W(x,f(a, x)) = [f(b, x) - f(a, x)] OW~x, y) \
Y Y~f(a.",)

+ B[f(b, x) - f(a, x)] (4)

for some B (depending on x) in (0, 1). Substituting (4) into (3), we obtain
an equality of the form

W(x,f(a(t), x)) = W(x,f(a, x)) + tG(x, t)[W(x,f(b, x))

- W(x,f(a, x))] + E(x, t),

where, as is easily seen, G(x, t) is continuous, G(x, 0) > 0, and II E(x, t)11 = o(t)
as t~O.

4. UPPER AND LOWER BOUNDS FOR PMoF(g)

Let g be an arbitrary function defined on X, and let F be a family of
functions on X. Define PF(g) = inffEF Ilf - g II, the error of approximation
to g from F. It is clearly of interest to determine how a transformation of
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the family Fwill affect p. In this section we study this problem for transforma
tions which are a special case of those considered in Section 2.

Let M be a real-valued function defined on the real line R and such that
on any closed interval it is (a) strictly increasing and (b) absolutely con
tinuous. Furthermore, assume that (c) M-l is absolutely continuous on any
closed and bounded interval contained in M(R). For a given F, we shall
consider the family {M 0 f:fE F}, denoted by M of. Now letg be continuous
on X, and assume that M-l 0 g exists at x, for all x E X. Then the quantity
for which we wish to obtain bounds is PMoF(g). We agree to exclude the
case where PF(M-l 0 g) = 0; it is easily shown that this occurs if and only
if PMor(g) = 0.

Taking any 8 > 0, let h E F be such that

Ilh - M-l 0 g II ~ (1 + 8) PF(M-l 0 g).

Using a standard theorem from real analysis [8], we see that Mis differentiable
a.e. and, for any x' E X,

(5)

Now PMoF(g) ~ II g - M 0 h II = SUPX'EX Ig(x') - M 0 h(x')I. Introducing
the notation

l[a'b]'
<a, b) = {a},

[b, a],

it follows from (5) that

a < b,
a = b,
a> b,

PMoF(g) ~ sup {I M-l 0 g(x') - fl(x') I . sup I M'(t)I},
X'EX tET

where T = <heX'), M-l 0 g(x').
From this follows

PMoF(g) ~ Ilfl - M-l 0 g II . sup sup I M'(t)J
x/eX leT

~ (l + 8) PF(M-l 0 g) sup I M'(t)l,
tEG(6l

where

G(8) == [inf M-l 0 g(x') - (l + 8) PF(M-l 0 g), sup M-l 0 g(x')
x'eX x/eX

+ (l + 8) PF(M-l 0 g)].

(6)
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Since the inequality (6) holds for all 8 > 0, we may let 8 -+ 0 in the first
factor, obtaining

for any 8> O. (7)

Note that assumption (c) was not used in getting this upper bound.
To obtain a lower bound, take 8 > 0 and let hE F be such that

/I g - M 0 h II :'( (1 + S) PMoF(g). Then, using (c), we see that for any x' E X

f
glX ')

M-I 0 g(x') - f2(X') = (M-I)' (t) dt.
MOf,(x')

Noting that PF(M~I 0 g) :'( II M-I 0 g - f~ II, and using the same procedure
by which we arrived at (7), we find

where

for any 8> 0, (8)

H(8) == [inf g(x') - (1 + 8)PMoF(g), sup g(x') + (1 + 8)PMoF(g)] () M(R).
x/eX x'eX

Since PF(M-I 0 g) =1= 0 by assumption, SUPteH(d) I(M-I)'(t)1 > 0 for all 8 > O.
Therefore, we obtain the lower bound

P/lfOF(g) ;:? PF(M-I 0 g) inf I l/(M-I)'(t)].
leH(d)

(9)

Combining (7) and (9) yields our final result:

sup I M'(t)!;:? PMo~~g) ;:? inf I I j(M-I)'(t) I (10)
leG(6) PF(M 0 g) leH(d)

for any 8> O.
If M and M-I are continuously differentiable, then G(8) and H(8) can be

replaced by G(O) and H(O) , respectively. If PF(M-I 0 g) can be calculated,
one can get an upper bound on PMoF(g); using this bound to get a set
Hd H(8) (for some 8), one can then get a lower bound on PMoF(g).

As a simple example, let M(y) = eY ; we then have M 0 F = {ef :fE F},
M-I(X) = In x, and M(R) = (0, +00). Let g be the function to be approxi
mated. We have assumed that M-I(g(X)) = In (g(x)) exists for all x E X,
i.e., g > 0 on X. This is a reasonable restriction since eflx ) is always positive.
Also we assume that PF(ln g) =1= O. Let ex, (3 be such that 0 < ex ~ g(x) ~ {3,
for all x E X. Then In ex :'( M-I 0 g :'( In (3. It follows that

G(O) r;: [In ex - PF(ln g), In (3 + PF(ln g)] == G,
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and

H(O) C [ex - PeXPoF(g), f3 + PeXpoF(g)l - H.

Finally, we compute

sup I M'(t)J = sup I et I = f3 exp[PF(ln g)],
lEG lEG

and

inf I l/(M-l)'(t)1 = inf I t I = max(O, ex - PexpoF(g)).
IEH IEH

From (10) it then follows immediately that

and, rearranging, we find
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